Determination of the Absolute Configuration of Primary Amines in Polar NMR Solvents

Hee Choon Ahn and Kihang Choi*

Department of Chemistry and Center for Electro- and Photo-Responsive Molecules, Korea University, Seoul 136-701, Korea

(Received August 24, 2007; CL-070910; E-mail: kchoi@korea.ac.kr)

N-(2-Nitrophenyl)proline (2-NPP) can be used in a wide range of solvents as an effective chiral auxiliary for the absolute configuration assignment of α -chiral primary amines. Even in competitive hydrogen-bonding solvents, 2-NPP amides of primary amines retain the conformation preference for intramolecular hydrogen bonding and produce significant anisotropic effects on the amine substituents. As a result, the absolute configuration can be assigned by comparing the 1 H NMR spectra of diastereomeric 2-NPP amides recorded in polar NMR solvents.

 1 HNMR spectroscopy is one of the most convenient and widely used methods to assign the absolute configuration of chiral compounds in solution.¹ In general, the chiral molecule is derivatized with the two enantiomers of a chiral derivatizing agent (CDA) and the NMR spectra are compared to obtain the chemical shift difference between the two resulting diastereomers ($\Delta \delta^{RS} = \delta(R) - \delta(S)$). Proper analysis of the $\Delta \delta^{RS}$ values based on the diastereomer conformations can lead to the absolute configuration assignment of the chiral substrate. Among several CDAs available for the configuration assignment of α -chiral primary amines, α -methoxyphenylacetic acid (MPA)² and α methoxytrifluoromethylphenylacetic acid (MTPA)³ are the two most widely used reagents. $\frac{4}{1}$ For these reagents, however, the range of the solvent systems is limited; because the magnitude of $\Delta \delta^{RS}$ values is small and sensitive to solvent polarity, the analysis of MPA and MTPA amides has been carried out in relatively nonpolar solvents such as $CDCl₃$ and $CD₂Cl₂$.^{1,5,6}

Recently, we have discovered that N-(2-nitrophenyl)proline (2-NPP) amides of α -chiral primary amines produce significantly large $\Delta \delta^{RS}$ values in CDCl₃.⁷ In this solvent, the lowest energy conformation of 2-NPP amides is stabilized by a hydrogenbonding network connecting the amide hydrogen, proline nitrogen, and nitro oxygen atoms (Figure 1), and the amine substituents $R¹$ and $R²$ are under different anisotropic effect. We envisioned that this intramolecular-bifurcated hydrogen bond (Hbond) might control the 2-NPP amide conformation even in competitive hydrogen-bonding solvents, like methanol and acetone, so that the 2-NPP method could be extended to the solvent systems with better solubilizing properties for polar compounds. Here, we report that 2-NPP can be used as an effective CDA in polar solvents including dimethylsulfoxide- d_6 ((CD₃)₂SO), a highly polar solvent frequently used for the NMR analysis of organic compounds insoluble in CDCl3.

To test the solvent dependence of the $\Delta \delta^{RS}$ value, the ¹H NMR spectra of (R) - and (S) -2-NPP amides of L-leucine methyl ester (NPP–Leu–OMe) were recorded in five common NMR solvents (Table 1).⁸ The $\Delta \delta^{RS}$ values obtained in these solvents have the same signs as those obtained in CDCl₃, suggesting that 2-NPP amides retain the same conformational preference in the tested solvents. As expected, the largest $\Delta \delta^{RS}$ values

Figure 1. Conformational preference of (R) - and (S) -2-NPP amides. The hydrogen bonds connecting proline N, nitro O, and amide NH atoms are indicated by dashed lines.

Table 1. Selected $\Delta \delta^{RS}$ values of NPP–Leu–OMe (R¹ = CO_2CH_3 , $R^2 = CH_2CH(CH_3)_2$) obtained in various NMR solvents

Solvent	$\varepsilon^{\rm a}$	pK_{HB} ^b	OCH ₃	$C(CH_3)$
CDCl ₃ ^c	4.8		$+0.26$	$-0.31/-0.30$
C_5D_5N	12.4	1.86	$+0.10$	$-0.16/-0.14$
(CD_3) ₂ CO	20.7	1.18	$+0.17$	$-0.23/-0.20$
CD ₃ OD	32.7	0.82	$+0.15$	$-0.24/-0.20$
CD ₃ CN	37.5	0.91	$+0.16$	$-0.25/-0.20$
(CD_3) ₂ SO	46.7	2.58	$+0.04$	$-0.10/-0.05$

^aFrom ref 11. ^bThe value reported for the corresponding nondeuterated solvent in ref 9b. ^cFrom ref 7.

were observed when the spectra were recorded in CDCl₃ and smaller values in the hydrogen-bonding solvents. While there is some relationship between the solvent dielectric constant (\mathcal{E}) and the $\Delta \delta^{RS}$ value, it is clear that the solvent polarity scale is not sufficient to account for the observed variations.

To study the effect of solvent competition on the intramolecular H bonds and, in turn, on the $\Delta \delta^{RS}$ values, hydrogen-bonding properties of the solvents were compared. Figure 2 shows the correlation between the $\Delta \delta^{RS}$ absolute value ($|\Delta \delta^{RS}|$) and the H-bond acceptor scale (pK_{HB}) of the solvent, originally developed by Taft and co-workers to quantify the strength of H-bond acceptors.⁹ In general, smaller $|\Delta \delta^{RS}|$ values were observed in better H-bond-accepting solvents presumably because solvent competition reduces the population of the representative conformation stabilized by the intramolecular H-bonds. One noticeable exception was CD₃OD, which has both H-bondaccepting and -donating properties so its competitive hydrogen-bonding ability could not be estimated properly from the H-bond accepter scale alone.

Among the tested solvents, $(CD_3)_2$ SO is the best at hydro-

Figure 2. Correlation of the $|\Delta \delta^{RS}|$ of NPP–Leu–OMe with solvent H-bond acceptor strength $(O, OCH_3; \blacktriangledown$ and \blacklozenge , $C(CH_3)_2$).

Figure 3. Selected $\Delta \delta^{RS}$ values of diastereomeric 2-NPP amides $(R = 2-NPP)$. Chemical shift data were collected in (CD_3) ₂SO.

gen-bond-accepting ability with a strongly polarized bond to oxygen. Although the $\Delta \delta^{RS}$ values obtained in $(CD_3)_2SO$ are significantly smaller than those obtained in other solvents, the absolute values are still comparable to the values reported for the corresponding MPA and MTPA amides in $CDCl₃,^{5,10}$ suggesting that 2-NPP can be used in $(CD₃)₂SO$ as a CDA producing modest $\Delta\delta$ values.

To check the general applicability of 2-NPP in $(CD_3)_2$ SO, we examined more 2-NPP amides with diverse structures. The ¹H signals from the chiral substrate were assigned using COSY and other NMR spectroscopic methods, and their chemical shifts were compared to obtain the $\Delta \delta^{RS}$ values, which are summarized in Figure 3 along with the structures of the amines. In all cas-

es, the $\Delta \delta^{RS}$ values are positive for the R¹ substituent and negative for the $R²$ substituent and this general trend is fully consistent with the representative conformational models shown in Figure 1. These results demonstrate that the spatial positions of the R^1/R^2 substituents and, in turn, the absolute configuration of the chiral center can be assigned successfully on the basis of the $\Delta \delta^{RS}$ values obtained in $(CD_3)_2$ SO.

In summary, we have shown that 2-NPP can be used to assign the absolute configuration of α -chiral amines in commonly used polar solvents. Solvent effects on the $\Delta \delta^{RS}$ value could be understood in terms of solvent competition on hydrogen-bonding interactions. Even in a highly competitive solvent such as $(CD₃)₂SO, 2-NPP$ amides retain the conformational preference for intramolecular hydrogen bonding and produce selective anisotropic effects on the amine substrate. To our knowledge, 2-NPP is the first CDA for primary amines providing modest to large $\Delta \delta^{RS}$ values in a wide range of solvents. This 2-NPP method should find its application to amine compounds which are insoluble in nonpolar solvent systems recommended for the MPA and other methods.

This work was supported by a Korea University Grant and the Korea Science and Engineering Foundation through CRM of Korea University.

References and Notes

- 1 a) J. M. Seco, E. Quiñoá, R. Riguera, Chem. Rev. 2004, 104, 17. b) T. J. Wenzel, Discrimination of Chiral Compounds Using NMR Spectroscopy, Wiley-Interscience, Hoboken, NJ, 2007.
- 2 B. M. Trost, J. L. Belletire, S. Godleski, P. G. Mcdougal, J. M. Balkovec, J. J. Baldwin, M. E. Christy, G. S. Ponticello, S. L. Varga, J. P. Springer, J. Org. Chem. 1986, 51, 2370.
- 3 a) J. A. Dale, H. S. Mosher, J. Am. Chem. Soc. 1973, 95, 512. b) I. Ohtani, T. Kusumi, Y. Kashman, H. Kakisawa, J. Am. Chem. Soc. 1991, 113, 4092.
- 4 For other CDAs for amines, see: a) T. Oshikawa, M. Yamashita, S. Kumagai, K. Seo, J. Kobayashi, J. Chem. Soc., Chem. Commun. 1995, 435. b) R. Chinchilla, L. R. Falvello, C. Najera, J. Org. Chem. 1996, 61, 7285. c) Harada, Y. Shimizu, K. Fujii, Tetrahedron Lett. 1998, 39, 6245. d) J. M. Seco, E. Quiñoá, R. Riguera, *J. Org. Chem.* **1999**, 64, 4669. e) Y. Takeuchi, M. Segawa, H. Fujisawa, K. Omata, S. N. Lodwig, C. J. Unkefer, Angew. Chem., Int. Ed. 2006, 45, 4617.
- 5 S. K. Latypov, J. M. Seco, E. Quiñoá, R. Riguera, *J. Org.* Chem. 1995, 60, 1538.
- 6 MPA has been used in a single derivatization method where the Ba^{2+} -induced chemical shift changes are monitored in CD₃CN. See: a) B. López, E. Quiñoá, R. Riguera, *J. Am.* Chem. Soc. 1999, 121, 9724. b) R. García, J. M. Seco, S. A. Vázquez, E. Quiñoá, R. Riguera, J. Org. Chem. 2006, 71, 1119.
- 7 H. C. Ahn, K. Choi, Org. Lett. 2007, 9, 3853.
- 8 For the synthesis of the 2-NPP amides, see Ref. 7.
9 a) D Gurka R W Taft *I Am Chem Soc* 1969 9.
- a) D. Gurka, R. W. Taft, J. Am. Chem. Soc. 1969, 91, 4794. b) C. Laurence, M. Berthelot, Perspect. Drug Discovery Des. 2000, 18, 39. c) C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 3rd ed., Wiley-VCH, Weinheim, 2003.
- 10 T. Kusumi, T. Fukushima, I. Ohtani, H. Kakisawa, Tetrahedron Lett. 1991, 32, 2939.
- 11 NMR Solvent Data Chart, Cambridge Isotope Laboratories, Inc., Andover, MA.